Resolution and Sensitivity as a Function of Energy and Incident Geometry for Germanium Detectors
نویسنده
چکیده
The use of modeling programs such as MCNP to predict the response of HPGe detectors is increasing in importance. Accurate simulation of germanium detectors to incident gamma rays relies on knowledge of the performance of the detector in different detector-source geometries. Two important performance parameters are the resolution and sensitivity. The resolution is the FWHM and FW.1M/FWHM ratio. The IEEE 325-1996 standard only specifies the FWHM measurement at one geometry and two energies. Nearly all measurements are made in a different geometry and at other energies. Other investigators [1,2], have shown that the sensitivity and resolution change with position of the incident gamma ray on the front of the detector. Such variability has possible implications for the accuracy of peak shape and area determination, since the calibration is potentially a function of angle of incidence. To quantify the sensitivity and resolution variation as a function of energy and point of incidence, measurements have been made on several coaxial detectors of various crystal types and sizes in different source-detector geometries. The full-energy peaks from 59 keV to 2.6 MeV were used. The detectors were placed in a low-background shield to reduce any contribution from external sources. None of the detectors tested was a low-background type. The sources used were an Am source, Co source and a natural thorium oxide sample. The Am 59 keV gamma rays were collimated by a 2 cm thick, 1 mm diameter lead collimator. Several gamma rays from the thorium source were used and collimated by a 10 cm thick and 2 mm diameter tungsten collimator. These collimated sources were used to collect spectra for the incident beam on the front and sides of the detectors. The peak widths were calculated using the methods outlined in IEEE 325-1996. Data are presented to show that the peak shape and sensitivity change with incident beam position and full peak energy.
منابع مشابه
شبیه سازی یک آشکارساز تناسبی میکرو نواری برای آشکارسازی گاز رادن و دختران با کد مونت کارلو (MCNPX)
Many detection methods have been applied to detect radon gas. Due to the low noise and high resolution of gas detectors compared to semiconductor detectors or scintillation detectors, using them to detect alpha radiation is very considerable. Microstrip proportional detector is also included in this group and it has not been used for the detection of radon. In this article, response of the micr...
متن کاملEfficiency and Resolution of Germanium Detectors as a Function of Energy and Incident Geometry
The use of germanium detectors for the identification and quantification of radionuclides in unknown and non-standard counting geometries has increased in the recent past with the need to clean up and verify sites used for radionuclide processing, smuggling detection and other purposes. The calculation of the amount of radionuclide present requires a knowledge of the efficiency of the detector ...
متن کاملPosition Sensitive Germanium Detectors for the Advanced Compton Telescope
The nuclear line region of the gamma ray spectrum remains one of the most challenging and elusive goals of high energy astrophysics. The scientific objectives are well defined, but require well over a factor of 10 increase in sensitivity compared to present day instruments to be achieved. The most promising approach to achieve this sensitivity and a broad range of scientific objectives is offer...
متن کاملDevelopment and applications of position-sensitive solid-state gamma ray detectors
The development of high -resolution position-sensitive, solid-state detectors will enable gamma ray detectors with improved sensitivity and imaging capabilities. The gamma ray astrophysics group at NRL has been developing germanium strip detectors for several years. We have shown that three-dimensional locations for gamma ray interactions can be determined with sub-millimeter accuracy, and have...
متن کاملDetermination of virtual point for HPGe detector at various gamma rays energies by simulation and experimental methods
High Purity Germanium detectors (HPGe) are subdivisions of semiconductor detectors which are widely used in nuclear technology from space industry to nuclear medicine, due to their high resolution, low dead time, unlimited size and compatibility with a variety of environments. The( absolute and intrinsic) efficiency of the HPGe detector, which depends on the geometry of the source-detector syst...
متن کامل